

ЭНЕРГОСБЕРЕГАЮШИЕ СИСТЕМЫ ДЛЯ ДОМА

Газовая горелка HSP 1

Инструкция по монтажу и эксплуатации

10-100 квт

СОДЕРЖАНИЕ

1. Нормы и предписания	3
1.1 Нормы и предписания	3
2. Общие сведения	4
2.1 Чем отличается горелка НРМ от других	8
2.2 Экономические показатели	5
2.3 Описание горелки	5
3. Монтаж	6
3.1 Размеры отверстий платы горелки	6
3.2 Монтаж горелки	6
3.3 Особенности монтажа	6
3.4 Проверка системы	6
3.6 Особая область применения	6
4. Эксплуатация	7
4.1 Пуск и наладка	8
4.2 Установка мощности (потенциометра)	8
4.3 Менеджер горения	8
5. Техническое обслуживание	9
5.1 Компьютерная диагностика	9
5.2 Таблица мощностей	10
6. Поиск неисправности	11
6.1 Диагностика и устранение неисправности	11
6.2 Описание неисправности	12
7. Техническая документация	13
7.1 Электрическая схема подключения	13
7.2 Технические параметры HSP 1	14
7.3 Рабочее поле	15
7.4 Части горелки	16
7.5 Гарантийные обязательства	
7.6 Размеры горелки HSP1	17
8. Заявление соответствия	18
8.1 Сертификат производителя	18
8.2 Подтверждение прохождения испытаний	18

Пожалуйста, перед началом монтажа внимательно прочтите эту инструкцию!

За ущерб, вызванный не соблюдением этой инструкции, производитель не несёт ответственности!

Работы, выполненные не качественно или с не соблюдением правил могут привести к травмам и материальному ущербу!

Газоопасные работы!

Монтаж, пуск, наладку, техническое обслуживание и ремонт горелки разрешается выполнять только авторизованной специализированной организации.

При работах с котлом и горелкой необходимо:

- выключить аварийный выключатель электроснабжения и зафиксировать его против случайного включения
- перекрыть подачу газа и обезопасить против случайного открывания.

HSP 1 20-70 кВт

1.1 Нормы и предписания

При пользовании горелкой обязательно соблюдать ниже указанные нормы и правила.

Монтаж, приём в эксплуатацию и техническое обслуживание разрешается только специализированному персоналу. При этом должны учитываться местные нормы и пра-вила. Персонал несёт ответственность за качество и соответствие выполненных работ.

Для безопасной, экологичной и экономичной эксплуатации следует учитывать следующие нормы:

- DIN 4756 Горелочные установки
- DIN EN 676 Газовые горелки с принудительным наддувом и использование дутьевых горелок на теплогенераторах
- VDE 0116 Правила электромонтажа для горелочных устройств

При монтаже газогорелочного оборудования учитывать DIN 4756, TRG1, рабочие листы - DVGW и местные предписания.

В помещениях с большой запылённостью, высокой влажностью воздуха или в помещениях с со-держанием агрессивных газов, эксплуатация горелки запрещается. Горелку разрешается использовать только для топлива указанного на её типовой вывеске. Минимум один раз в год установка должна контролироваться специалистом. DIN 4756 «Горелочные установки» отмечает, что

эксплуатирующий горелку (тот, кому принадлежит горелка) должен ежегодно из условий безопасной и экономичной эксплуатации, приглашать представителя сервисной службы для контроля технического состояния горелки.

В целях безопасности при нахождении в близи или непосредственно у горелки или газопровода запрещается использование открытого огня и курение.

1.2 Дымоходы и эффективность использования тепла

Котёл, горелка и дымоотводящая установка образуют единую систему. Пониженная температура уходящих дымовых газов способствует эффективному использованию энергоресурсов.

При температуре дымовых газов ниже 160°С необходимо систему выбирать таким образом, чтобы избежать ущерба от образующегося конденсата.

Для достижения равномерных показателей горения и редуцирования возможности образования конденсата, рекомендуется использовать регулирующий тягу клапан. В целях снижения шума в дымовой трубе, монтаж клапана рекомендуется на вертикальном участке дымохода.

2. Общие сведения

2.1 Принцип работы горелки

Благодаря многолетнему опыту в разработке газовых горелок нам удалось создать такой продукт, который отвечает не только всем сегодняшним требованиям к технологиям сжигания, но и значительно дальше по своим техническим возможностям и характеристикам.

На этапе разработки был выбран совершенно новый путь. Серия горелок НРМ это горелки с полным предварительным смешением газа и воздуха. Огненный ковёр на плетённой, жаропрочной поверхности напоминает излучающий пламя чулок.(Рис.1) Радиальное пламя излучается в стороны, к стенкам топочной камеры. Улучшается эффект теплопередачи, возможно использование горелок в очень коротких камерах сгорания. Большая плетёная поверхность обеспечивает низкие потери давления, пламя горит удивительно ровно и тихо. Уровень токсичности дымовых газов соответствует классу 3 и отвечает требованиям знака экологичности в Германии «голубой ангел». Концентрация NOx ниже 50 мг/м³, а концентрация СО ниже 40 мг/м³ при избытке воздуха α =1,3.

Плетёное покрытие пламенной трубы служит долго. защищает от обратных ударов и температурных колебаний пламени.

Рис.1 Излучающая горелочная труба

Подача газа и образование газовоздушной смеси происходит по принципу вентури. При работе вентилятора воздух на горение засасывается через форсунку вентури. За форсункой создаётся разрежение, и необходимое количество газа подмешивается к воздуху. Газовоздушная смесь проходит через вентилятор, огневую трубу и подаётся на горение. Данная конструкция обеспечивает надёжную и безопасную эксплуатацию горелки при значительных колебаниях давления в газопроводе, обеспечивая постоянное соотношение газа и воздуха.

Конструкция горелки позволяет соединить горелку с воздуховодом и обеспечить независимый забор воздуха на горение снаружи или из соседних помещений, защитив горелку от попадания не желаемых примесей содержащихся во внутреннем воздухе.

Автоматический режим работы

Горелки работают полностью автоматически. Все функции и режимы работы горелки контролируются цифровым менеджером горения. Автоматика горелки одноступенчатый, двухступенчатый обеспечивает или модулируемый режимы регулирования. Имеется отдельная функция управления горелкой для горячего водоснабжения или вентиляции. Электронная диагностика неисправностей и программирование режимов работы осуществляются при подключении менеджера к ПК.

Виды топлива:

- природный газ E, Hi=37,26 МДж/м³ (10,35 кВтч/м³);
- риродный газ LL, Hi=31,79 МДж/м³ (8,83 кВтч/м³); для горелок HSP 1.1E / HSP 1E / HSP 1.2E.
- сжиженный газ пропан/бутан B/P, Hi=93,20 МДж/м³ (25,89 кВтч/м³) для горелки HSP 1F.

Температура дымовых газов

Температура дымовых газов измеряется при помощи термометра встроенного в газоанализатор другого подходящего термометра. Место для замера рекомендуется в дымовой трубе на расстоянии двух диаметров от котла. Повышенная температура уходящих газов превышающая более чем на 30°C измеренное значение при первичном запуске горелки, указывает на значительное отложение продуктов сгорания на поверхностях нагрева. Для эффективной и надёжной эксплуатации рекомендуется провести чистку котла и технический контроль горелки.

Счётчик газа

Количество потребляемого газа определяется по счётчику газа и для контроля эффективности можно сравнивать с показаниями за предыдущий период времени. При сравнении следует учитывать среднюю наружную температуру за сравниваемый период.

Регулятор тяги

Запорный клапан дымовых газов используется, чтобы предотвратить не желаемое охлаждение котла в период отключения горелки. При полном закрытии возможно, на основании прерванного протока воздуха в котле и дымовой трубе, образование конденсата. Оснащение регулятором тяги обеспечивает достаточную вентиляцию дымовой трубы И предотвращает чрезмерное охлаждение котла.

2.2 Экономия энергии

Использование этой грелки означает для вас важный шаг в сторону уменьшения расходов на газ и электроэнергию!

Потребление электрической мощности составляет от 20 до 90 Ватт!

Кроме того, ежегодный контроль и сервисное обслуживание системы отопления специалистом способствует более эффективной её работе на протяжении всего срока эксплуатации.

Контроль параметров уходящих дымовых газов и времени работы горелки дают сведения о качестве горения и потреблении газа (КПД).

2.3 Применение горелок HSP

Горелки сертифицированы по системе ГОСТ РФ и разрешены к применению на территории России Ростехнадзором. Они допущены к использованию на различных типах теплогенераторов, например, на паровых или водогрейных котлах или генераторах тёплого воздуха и предназначены для сжигания газа с одноступенчатым или модулируемым управлением.

2.4 Объём поставки

Перед монтажом газовой горелки HSP проверить комплект поставки

- Вентилятор предварительного смешения, который состоит из алюминиевого корпуса спиралевидной формы и пластмассового колеса вентилятора
- Частотно-регулируемый мотор
- Горелочная труба с высококачественным, плетёным покрытием (NIT) и хорошими изоляционными свойствами
- Газовый мультиблок
- Многофункциональный, цифровой менеджер горения с интегрированным автоматом розжига и ионизационным контролем пламени
- Электроды зажигания и контроля пламени с высоковольтным кабелем
- Защитный кожух
- Монтажный фланец
- Фланцевое уплотнение и крепёжные болты
- Рыле давления воздуха

Все горелки прошли предварительные испытания и настройку. Протокол измерений прикладывается.

Рис.2 Горелка

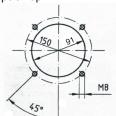
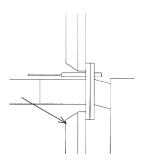


Рис.3 Горелка без кожуха

3. Монтаж


3.1 Размеры отверстий платы горелки

При монтаже горелки следует соблюдать следующие размеры:

- диаметр окружности для болтов крепления Ø 150±1,5 мм
- диаметр отверстия в двери котла Ø 91 мм
- резьба для болтов М8

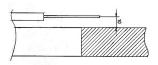


Рис.4

3.2 Монтаж горелки

При закреплении горелки на дверце котла обратить особое внимание на то чтобы электроды не касались изоляции дверцы. Иначе может произойти короткое замыкание на массу. Внутреннюю изоляцию двери котла обрезать по конусу

Минимальное расстояние от электродов зажигания до поверхности огневой трубы 1 см. Расстояние между електродами 3 мм. Меньшее расстояние приведёт к повреждению поверхности горелки.

Внимание!


Минимальное расстояние от электродов зажигания до поверхности огневой трубы:

а) 1 см. (при использование двойного электрода) расстояние между электродами 3 мм. б) 5 мм (при использование

Меньшее расстояние приведёт к повреждению поверхности горелки.

одинарного электрода)

3.3 Особенности монтажа

беспрепятственно вытаскивать горелку.

Внимание!

Минимальные размеры топочной камеры котла для HPM 1: мин. окружность 280 мм; мин. глубина от фланца ок. 300 мм.

Перед первым стартом и при последующих технических осмотрах все соединения газоведущих частей проверить на герметичность!

Особое внимание обратить на правильное подключение фазы и защитного (заземляющего МП) провода! Проверить качество соединений защитного (заземляющего) провода!

3.4 Проверка системы

Перед монтажом и пуском горелки следить за соблюдением следующих норм и правил:

- 1. DIN 4765 и 4788 правила использования магистрального газа;
- 2. DIN 4705 расчёт дымовой трубы;
- 3. DIN 4751 требования контрольной сигнализации на пульте;
- 4. DIN 37116 электроинсталяция, подключение горелочных устройств; правила электромонтажа газогорелочных устройств
- 5. VDE-правила электромонтажа;
- 6. DVGW-G 600 правила прокладки газопровода;
- 7. DIN 4756 правила безопасности для газогорелочных устройств
- 8. TRF.

Монтаж, запуск, ремонт и сервисное обслуживание горелки должен выполняться специалистом.

Используйте оригинальные запасные части от производителя. При электроинсталяции соблюдать VDE и ÖVE (инструкции по электромонтажу).

Подвод и по подключение газопровода должен выполняться специализированной фирмой, письменно гарантирующей надёжность работы и соблюдение правил монтажа газопроводов.

Информация об особенностях системы и мерах безопасности должна наглядно вывешиваться в котельном помещении.

3.5 Особая область применения

Использование горелок на специальном оборудовании, например:

- излучающие поверхности нагрева;
- пекарные печи;
- тлеющие печи
- технологическое оборудование следует предварительно согласовать со специалистами фирмы HANSA.
- Воздух, поступающий на горение не должен содержать агрессивных веществ!
- Обеспечить соответствующую защиту в помещениях содержащих в воздухе галогены углеводорода (например: печатные издательства, парикмахерские, химчистки и лаборатории).
- При работе горелки избегать сильной запылённости! Горелка предназначена для работы в закрытых помещениях с температурой от 5°C до 40°C! Важно обеспечить необходимую вентиляцию!

При не соблюдении этих условий гарантия не действительна!

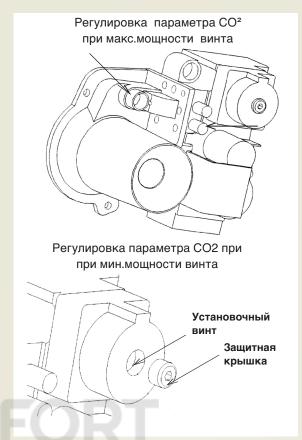
4. Эксплуатация

4.1 Пуск и наладка

обеспечения безопасной эффективной И эксплуатации горелки важно, чтобы наладка проводилась квалифицированным специалистом.

Порядок работы горелки:

После включения горелки и окончания времени предварительной продувки, вентилятор на 10 сек. умень-шает число оборотов на стартовое значение. После розжига следует время стабилизации ок.15 сек. Затем вентилятор набирает установленную максимальную мощность, которая ограничивается положением потенциометра.


Работу вентилятора постоянно контролирует реле давления воздуха. Контроль параметров дымовых газов следует проводить на разогретом котле (около 50°C). Определяющими показателями настройки горелки являются содержание СО(ррм) и СО2 (%), оптимальные значения которых для каждого вида топлива указанны в эмиссионных таблицах.

В случае если измеренные показания отличаются от требуемых, необходимо провести корректировку наладки горелки сначала при максимальной мощности (А), а затем при минимальной (В).

Перед началом наладки убедитесь в герметичности котла и соединениях дымовой трубы. Проникновение побочного воздуха вносит значительную погрешность в измерения и приводит к неправильной наладке.

- **А.** Наладка горелки при макс. мощности (*Puc.5*)
- Желаемая максимальная мощность горелки устанавливается потенциометром (1-9) (Рис.5)
- Запустить горелку и определить газоанализатором содержание СО2 в дымовых газах.
- При необходимости отрегулировать содержание СО2 с помощью дроссельного винта возле форсунки
- по часовой стрелке меньше газа (меньше СО2);
- против часовой стрелки больше газа (больше СО2).

При переключении на другой типа газа E,LL или B/P, необходимо также провести контроль и регулировку СО2 в соответствии с данными указанными в таблице. Проверить соответствие размера вентури.

Puc 5

	Эмиссио	нная таблица	Рис.5
Прир. газ E(G20), при макс. мощности			
Туре	СО	CO2	Nox
HSP1	<10ppm	8,7%-8,9%	30-35ppm
Г	Ірир. газ LL(G2	5), при макс. мо	щности
Type	со	CO2	Nox
HSP1	<10ppm	9,0%-9,1%	30-35ppm
Сжиже		ан(G31) бутан(G ющности	30), при макс.
Туре	СО	CO2	Nox
HSP1	10ppm	10,9%-11%	40-45 ppm
Пр	иродный газ Е	(G20), при мин. ı	мощности
Type	СО	CO2	Nox
HSP1	<10ppm	8,8%-9%	30-35 ppm
При	іродный газ LL	.(G25), при мин.	мощности
Type	СО	CO2	Nox
HSP1	10ppm	8,6%-8,8%	<25ppm
Сжиженный газ пропан(G31) бутан(G30), при мин. мощности			
Туре	со	CO2	Nox
HSP1	10ppm	10,9%-11%	40-45ppm

4. Эксплуатация

4.1 Пуск и наладка

- Б. Наладка горелки при минимальной мощности
- После настройки макс. мощности проверить качество горения при минимальной мощности (рис.7), для этого потенциометр повернуть до конца влево.
- Необходимое юстирование качества горения осуществляется с помощью регулировочного винта газового мультиблока (рис.5), предварительно удалив защитную крышку:
- по часовой стрелке больше газа (больше СО2)
- против часовой меньше газа (меньше СО2)

Внимание: мультиблок реагирует значительно чувствительней, чем вентури.

- **В.** Ещё раз проконтролировать параметры CO2 при макс. мощности. Потенциометр установить, как указано в поз.4.2 *стр.*10.
- **Г.** Закрыть защитную крышку, проверить плотность газовых соединений, надеть защитный кожух.

4.2 Установка мощности горелки

Горелка прошла предварительную настройку газа и воздуха на заводе.

Мощность горелки определяется положением потенциометра от 1 до 9 согласно таблице на *стр.10*. Изменяя положение потенциометра, меняется число оборотов вентилятора и с ним пропорционально меняется количество подаваемого газа и воздуха. Потенциометр следует вращать медленно, чтобы избежать пульсации пламени.

После установки мощности проверить контрольные эмиссионные значения СО, СО2 и NOx и сравнить с указанными в таблицах на *стр.*7. В случае отклонения измеренных эмиссионных показателей от требуемых произвести корректировку в соответствии с поз.4.1.

4.3 Менеджер горения

Многофункциональный, цифровой менеджер горения с интегрированным автоматом розжига, ионизационным контролем пламени и регулированием оборотов мотора вентилятора.

Режимы работы горелки:

Одноступенчатый – одно установленное число оборотов вентилятора для постоянной мощности горелки; Модулируемый* *- командный сигнал 0 -10V / 4 -20 mA плавно меняет число оборотов вентилятора / мощности горелки в зависимости от потребления тепла.**

** Только если котел оснащен пультом или Hansa DDC – модулем для управления модулируемой горелкой (№-Арт. 0917)

4.4 Перевод на сжиженный газ

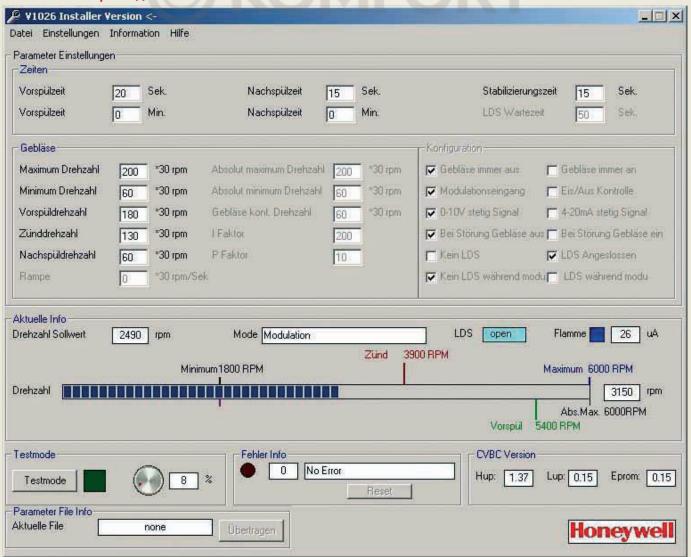
При переводе горелки на сжиженный газ необходимо встраивать в газовый вентиль сответствующую инжекционную шайбу (Арт. 0959). Затем максимально выкрутить регулировочный винт трубки вентури против часовой стрелки. При этом установится требуемый параметр СО.

Инжекционная шайба (0959)

Вентиль вентури

Рис. 6 Подключение к ПК

Рис. 7 Потенциометр установки мощности Р1


5. Техническое обслуживание

5.1 Техническое обслуживание и сервисная служба

Один раз в год необходимо силами квалифицированного специалиста осуществлять проверку работы и герметичности всей установки в целом.

В случае неквалифицированного монтажа или ремонта, установки посторонних деталей и узлов, а также ненадлежащего использования мы не несём ответственности за последствия.

5.2 Компьютерная диагностика

5. Техническое обслуживание

5.3 Таблицы выбора мощности

HSP1.1E 10-45 κBτ

LL- Газ (G25), входное давление 10 мбар

Расход газа в (м³/мин)	Мощность (кВт)	Положение потенцио- метра	Давление вентилятора (мбар)
0,020	10	1	0,4
0,023	12	2	0,4
0,030	15	3	0,5
0,040	21	4	0,6
0,047	25	5	0,7
0,057	30	6	0,9
0,066	35	7	1,0
0,077	40	8	1,2
0,086	45	9	1,3

Е- Газ (G20), входное давление 10 мбар

Расход газа в (м³/мин)	Мощность (кВт)	Положение потенцио- метра	Давление вентилятора (мбар)
0,020	10	1	0,4
0,023	12	2	0,4
0,030	15	3	0,5
0,040	21	4	0,6
0,047	25	5	0,7
0,057	30	6	0,9
0,064	35	7	1,0
0,073	40	8	1,2
0,082	45	9	1,3

HSP 1E 20 – 70 κBτ

LL- Газ (G25), входное давление 20 мбар

Расход газа в (м³/мин)	Мощность (кВт)	Положение потенцио- метра	Давление вентилятора (мбар)
0,040	20	1	0,6
0,050	26	2	0,8
0,060	30	3	0,9
0,075	39	4	1,1
0,090	47	5	1,4
0,110	56	6	1,7
0,120	64	7	2,1
0,125	68	8	2,4
0,135	70	9	2,7

E- Газ (G20), входное давление 20 мбар

Расход газа в (м³/мин)	Мощность (кВт)	Положение потенцио- метра	Давление вентилятора (мбар)
0,040	20	1	0,6
0,048	26	2	0,8
0,057	30	3	0,9
0,072	39	4	1,1
0,085	47	5	1,4
0,100	56	6	1,7
0,110	64	7	2,1
0,120	68	8	2,4
0,130	70	9	2,7

Пропан (G30), входное давление 50 мбар

Расход газа в (м³/мин)	Мощность (кВт)	Положение потенцио- метра	Давление вентилятора (мбар)
0,015	20	1	0,6
0,018	26	2	0,8
0,022	30	3	0,9
0,029	39	4	1,1
0,035	47	5	1,4
0,041	56	6	1,7
0,047	64	7	2,1
0,050	68	8	2,4
0,052	70	9	2,7

Бутан (G31), входное давление 50 мбар

Расход газа в (м³/мин)	Мощность (кВт)	Положение потенцио- метра	Давление вентилятора (мбар)
0,015	20	1	0,6
0,018	26	2	0,8
0,022	30	3	0,9
0,029	39	4	1,1
0,035	47	5	1,4
0,041	56	6	1,7
0,047	64	7	2,1
0,050	68	8	2,4
0,052	70	9	2,7

HSP 1.2E 40-90 κBτ

LL- Газ (G25), входное давление 20 мбар

Расход газа в (м³/мин)	Мощность (кВт)	Положение потенцио- метра	Давление вентилятора (мбар)
0,077	40	1	1,2
0,08	45	2	1,3
0,09	50	3	1,5
0,1	55	4	1,7
0,11	60	5	1,8
0,12	65	6	2,1
0,13	70	7	2,6
0,15	80	8	2,8
0,17	90	9	2,9

E- Газ (G20), входное давление 20 мбар

Расход газа в (м³/мин)	Мощность (кВт)	Положение потенцио- метра	Давление вентилятора (мбар)
0,073	40	1	1,2
0,076	45	2	1,3
0,085	50	3	1,5
0,094	55	4	1,7
0,100	60	5	1,8
0,113	65	6	2,1
0,123	70	7	2,6
0,142	80	8	2,8
0,160	90	9	2,9

6. Поиск неисправностей

6.1 Диагностика и устранение неисправности

Постоянный контроль процесса работы служит защите горелки и окружающих. Чётко заданные величины граничных значений обеспечивают постоянное слежение за контрольным временем и этапами работы. Отклонение от этих граничных значений ведёт к подаче сигнала неисправности и аварийному отключению. При сложных неисправностях, например отсутствие пламени при розжиге, происходит аварийное отключение с блокировкой. После устранения неисправности, блокировка снимается нажатием кнопки RESET.

Описание кода неисправностей

Код	Неисправность	Устранение
01	Нет пламени после многих попыток старта	Заменить электрод зажигания
02	Посторонний свет	Заменить газовый вентиль (проверить камеру сгорания)
03	STB-превышение макс. температуры	STB-разблокировать, проверить циркуляционный насос
05	Аварийный сигнал от тахометра вентилятора	Заменить мотор
08	Неисправность во внутренней ионизационной цепи	Заменить менеджер горения или кабель
09	Неисправность в управлении вентилями	Заменить менеджер горения, кабель или газовый мультиблок
10	Внутренняя неисправность EEprom	Заменить менеджер горения
20	Внутренняя неисправность Low-Volt I/0-Prozessor	Заменить менеджер горения
21	Внутренняя неисправность High-Volt ADC-Prozessor	Заменить менеджер горения
22	Внутренняя неисправность Low-Volt ADC-Prozessor	Заменить менеджер горения
25	Внутренняя неисправность High/Low-Prozessor	Заменить менеджер горения
34	Прерывание электропитания	Заменить термостат котла или предохранитель
35	Отклонения частоты напряжения	Заменить менеджер горения или кабель
36	Неисправность внутреннего напряжения	Заменить менеджер горения

6. Поиск неисправностей

6.2 Сигнал неисправности с аварийным отключением и блокировкой

Код. неиспр.	Описание возможной неисправности
01	Нет пламени после многократных попыток старта. Блокировка после макс. 5 попыток старта. Разблокировка возможна только кнопкой RESET или по средствам коммуникаций. Дистанционная разблокировка возможна только 5 раз в течение 60 минут.
02	Посторонний свет. Распознаётся пламя при закрытом газовом вентиле.
03	STB сигнал. Сработал защитный термостат максимальной температуры (T>105°C).
05	Сигнал неисправности вентилятора. Требуемое значение числа оборотов 900 об/мин должно достигаться в течение 20 сек.
08	Неисправность внутренней электрической цепи контроля пламени; электрическая цепь контроля пламени постоянно проверяется и если результат проверки отрицательный происходит аварийное отключение.
09	Внутренняя неисправность управления газовыми вентилями; электрическая цепь управления вентилями постоянно проверяется и если результат проверки отрицательный происходит аварийное отключение.
10	Внутренняя неисправность EEPROM
20	Внутренняя неисправность Low-вольт I/0-процессор
21	Внутренняя неисправность High-вольт ADC-процессор
22	Внутренняя неисправность Low-вольт ADC-процессор
25	Внутренняя неисправность High / Low- процессор; программа содержит противоречивые данные.

6.3 Сигнал неисправности с аварийным отключением


Менеджер горения распознаёт неполадки, которые не ведут к блокировке. После их устранения горелка продолжает свою нормальную работу.

Код. неиспр.	Описание возможной неисправности
34	Отключение электропитания; напряжение<185 VAC. Если напряжение восстановлено в диапазоне 190-250 VAC, аварийный сигнал в течение 10 сек. снимается.
35	Частота переменного напряжения отклоняется более ± 5% от номинального.
36	Внутренняя неисправность электроснабжения. Отклонение высоковольтного или низковольтного напряжения превышает ± 10%

7. Техническая документация

7.1 Электрические схемы подключения

Электрическая схема подключения одноступенчатой горелки

7. Техническая документация

7.2 Технические параметры HSP 1

Тип горелки	HSP 1.1 E	HSP1E	HSP 1.2E	HSP 1F	
Мощность горелки мин. в кВт	10	20	40	20	
Мощность горелки макс. в кВт	41	70	90	70	
Мощность котла мин. в кВт	9	18	36	18	
Мощность котла макс. в кВт	36,9	36,9 63 81 63			
Вид газа	Е = природный	E = природный (LL+E) / F =для сжиженного (пропан-бутан			
Давление газа мин. / макс. в мбар		10 мбар / 60 мбар			
Напряжение/Частота	230B -1	230B -15% / +10% 50Гц ± 2%			
Потребление тока мин./макс		0,11A / 0,46 A			
Потребляемая мощность в Вт		20B1	г / 80 Вт		
Менеджер управления		Honeywell			
Вес в кг		8 кг			
Уровень шума		44 – 72 dB			

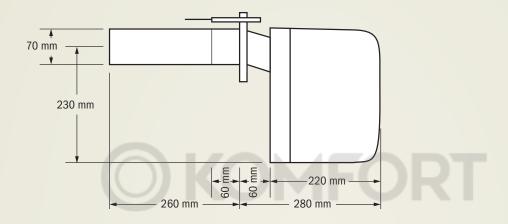


7.3 Рабочее поле горелки

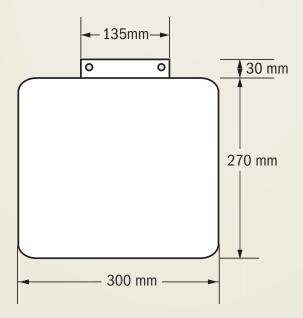

Рабочее поле горелки HSP1.1 G20, G25

Рабочее поле горелки HSP1 G20, G25, G 30, G31

Рабочее поле горелки HSP1.2 G20, G25, G 30, G31


Поз.	Описание	№-Арт.
1	Менеджер горения	1001293
2	Смесительное устройство вентури HSP 1.1 E	1001312
2a	Смесительное устройство вентури HSP1 E /F	1001310
2в	Смесительное устройство вентури HSP 1.2E	1001306
3	Реле давления воздуха	1001307
4	Мотор DSP HSP	1001525
5	Корпус горелки	1001747
6	Двойной фланец	1001969
7	Пламенная труба	1001548
8	Уплотнение для вентилятора	1001732
9	Уплотнение для наружного фланца	1001734
10	Уплотнение пламенной трубы	1001736
10.1	Уплотнение для электродов	1001740
11	Фланцевое уплотнение	1001744
12	Двойной электрод HSP	1003722/ 1002729
13	7-полюсный штекер	1000695
14a	Кабельный разъём 1-но ступ.	1000093
14b	Кабельный разъём модулируемой гор.	1000091
15	Крепёжные болты	3369
16	Угловой фланец Rp 1/2", 90°	1000969
17	Уплотнение фланца газового вентиля	1001317
18	Газовый мультиблок VK 4115	1001309
19	Уплотнение для вентури	1001316
20	Защитный кожух горелки	1002564

7.5 Гарантийные обязательства


Горелка работает надёжно и безопасно при соблюдении правил монтажа и пуска горелки.

Внимание! При приёме в эксплуатацию проверить герметичность соединений газоведущих частей и давление газа на входе перед мультиблоком (в потоке). Перед горелкой рекомендуется использовать газовый фильтр и запорный кран с термозащитой. Наша гарантия действительна 24 месяца после приёма в эксплуатацию, но максимально 27 месяцев после даты продажи и распространяется на замену дефектных частей. При замене использовать только оригинальные запчасти от HANSA, иначе гарантия не действительна.

7.6 Размеры горелки HSP 1

Maße (mm)	Α	В	С	D	Е	F	G	Н	I	K	L
HSP 1	240	270	80	30	280	260	220	60	60	230	70

8. Заявление соответствия

8.1 Сертификат изготовителя

Фирма «HANSA ÖI- und Gasbrenner GmbH» сертифицирует излучающую газовую горелку:

Продукт: Газовая горелка
Типовое обозначение HSP 1.1E / 1E/1.2E / 1F

Испытательный образец HSP 1
Испытательные нормы DIN EN 676
Место испытаний TÜV- Райнланд
Квалификация/Качество DIN EN ISO 9001

Сертификация Dekra-IST ID- номер продукта CE-0085

Этот продукт выполняет требования перечисленных директив и норм и выполнен в соответствии с прошедшим испытания образцом.

Для обеспечения надёжной, экологичной и экономичной работы соблюдены следующие нормы: DIN 4756 Газогорелочное оборудование; DIN EN 676 Газовые горелки с принудительным надувом; использование надувных горелок с теплогенератором; VDE 0116 электрическое оснащение горелочных устройств.

Производитель гарантирует, что действующие предписания для совместной работы газовой горелки и котла соблюдены.

8.2 Подтверждение прохождения испытаний

Фирма HANSA Öl-und Gasbrenner GmbH подтверждает, что ниже названная излучающая газовая горелка:

Продукт: Газовая горелка

Торговое обозначение: HSP1

Типовое обозначение: HSP 1.1E / 1E / 1F

прошла испытания в соответствии со следующими директивами:

Установки низкого напряжения 73/23 EWG -01.1973

EMV- директива 89/337 EWG 05ю1989 газовые установки 90 / 396/ EWG

Фирма HANSA Öl- und Gasbrenner GmbH

Коммерческий директор Ёрг Хоффманн

9. Технический паспорт на горелку

	Наименование горелки, комплектность	№ заказа	Колво
1.	Горелка газовая □HSP1.1E 10-45 кВт, □HSP 1E 20 – 70 кВт,		1
2.	Газовый мультиблок □DLEVK4125V, □GC DN 15	0973	1
3.	Удлинение пламенной головы на 150 мм		
4.	Менеджер горения, тип S4965V 1075 1	0972	1
5.	Реле давления газа, 5.0- 50 мбар		
6.	Реле давления газа GW50 A5/1, 5.0-50 мбар		
7.	Фильтр газовый, макс. рабочее давление 4 бар		
8.	Контроль герметичности для горелок HGZ/S (230-240 B, 50 Гц)		
9.	Регулятор давления газа FRS 5065, DN 65, фланцевый		
10.	Контроль герметичности VPS 504 S 04 для горелок G, WK (230-240 B, 50 Гц)		
11.	Манометр с кнопочным краном, G 1/4, 0-60 мбар, Резьбовое соединение		
12.	Элементы монтажные для установки манометра, контр. горелки с фланцем и резьбовым соединением		
13.	Колено угловое 90°, DN, PN 10, фланцевая резьба 1/2"HP x 1/2"HP		1

Общие сведения	(C)MF(C)DI			
Заводской номер горелки	901299			
Год изготовления 2015				
Вид топлива 🗆 природный газ; 🗆 сжиженный газ				
Давление подключения газа до 60 мбар				
Назначение производство тепла для систем отопления				

Свидетельство о приёмке					
Горелка HANSA изготовлена в соответствии с требованиями нормативных документов					
Для газовых и комбинированных горелок для жидкотопливных горелок					
ГОСТ 21204-97; ГОСТ 27824-2000; ГОСТ 27824-2000;					
ГОСТ Р 50591-93; ГОСТ Р 50460-92	ГОСТ P 50460-92				
Сертификат соответствия ГОСТ Сертификат соответствия ГОСТ № РОСС DE.MH01.B00119 № РОСС DE.MH01.B00138 / DE.MH01.B00139 Сертификат соответствия ГОСТ № РОСС DE.MH01.B00119					
Разрешение Гостехнадзора № РРС 00-28759 От 03.04.2008					
Стандарт ФРГ DIN-EN 676 Стандарт ФРГ DIN 4787, часты					
Директива о газосодержащем оборудование (90/396/EWG)					
Конструктивный образец горелки подвергнут испытаниям согласно норм Европейского сообщества и признан годным к эксплуатации					

Сведения о местонахождении горелки				
Предприятие и адрес:				
Местонахождение горелки (адрес котельной):				
Дата запуска в эксплуатацию:				
Сведения об обслуживании горелки				
Дата				
Сведения об обслуживании и замене деталей подпись				

10. Гарантийный талон

Продавец гарантирует в течение 12 месяцев с момента ввода оборудования в эксплуатацию, но не более 15 месяцев с даты покупки бесперебойную работу и хорошее техническое состояние оборудования.

Гарантия распространяется на все производственные и конструктивные дефекты. В обозначенный выше срок обеспечивается бесплатная замена неисправных (дефектных) частей оборудования. Гарантийному обслуживанию не подлежат сменные и быстроизнашиваемые детали оборудования (электроды поджига и ионизации, фильтры, жидкотопливные форсунки и т.п.). Гарантийные обязательства действительны при предъявлении заполненного гарантийного талона и при условии монтажа и ввода в эксплуатацию, а также сервисного обслуживания оборудования силами специализированной монтажной организации, имеющей необходимые лицензии и допуски (информация о монтажной организации заносится в п.п. 6-12 гарантийного талона).

В договоре Покупателя с организацией, которая будет осуществлять сервисное обслуживание оборудования, в обязательном порядке должен быть указан срок, в течение которого должен прибыть представитель сервисной организаций и устранить возникшую неисправность оборудования. Сервисная организация обязана иметь в наличии необходимый минимум запасных частей.

Гарантийные обязательства Продавца не распространяется на косвенные убытки Покупателя, связанные с неисправностью оборудования.

Оборудование снимается с гарантии в следующих случаях:

- > Нарушение правил монтажа, ввода в эксплуатацию и эксплуатации, изложенных в инструкции по монтажу и эксплуатации оборудования.
- > поврежден во время транспортировки от склада Продавца.
- > При наличии механических повреждений.
- > Повреждения, вызванные попаданием внутрь оборудования посторонних предметов, веществ жидкостей, насекомых.
- > Повреждения вызванные стихией, пожаром, бытовыми факторами,
- > Повреждения, вызванные несоответствием Государственным стандартам параметров топлива, питающего напряжения, питающих, телекоммуникационных, кабельных сетей и других внешних факторов.
- ** Повреждения, вызванные использованием нестандартных расходных материалов и запчастей.

Номер гарантийного талона	
Заводской номер горелки	
Покупатель, адрес	
Дата покупки	
Номер счета	
Подпись продавца	Печать продавца
Дата ввода оборудования в эксплуатацию	
Название монтажной организации, осуществившей ввод в эксплуатацию	
Адрес монтажной организации, осуществившей ввод в эксплуатацию	
Ф.И.О. представителя монтажной организации	

Сведения об обслуживании и замене деталей подпись					
	4EODT				
	4FORT				

Заметки

(C) KOMFORT

Заметки

(C) KOMFORT	